To change one set of coordinate axes inclined at an angle ω to another system at ω′ and origin remain unchanged we substitute
xsinω=x′sin(ω−θ)+y′sin(ω−ω′−θ)ysinω=x′sinθ+y′sin(ω′+θ)
Here ω=30∘,ω′=45∘and θ=0∘
⇒xsin30∘=x′sin(30∘−0∘)+y′sin(30∘−45∘−0∘)⇒12x=12x′−√3−12√2y′⇒x=x′−√3−1√2y′.......(i)⇒ysin30∘=x′sin0∘+y′sin(45∘+0∘)⇒12y=1√2y′y=√2y′........(ii)
Now equation of given line is y=2x+1
Substituting (i) and (ii)
√2y′=2(x′−√3−1√2y′)+1√2y′+2(√3−1√2y′)=2x′+1√6y′=2x′+12x′−√6y′+1=0