The correct option is B y=±x±(a2−b2)
Any tangent to the hyperbola x2a2−y2b2=1 is y=mx±√a2m2−b2
or y=mx+c where c=±√a2m2−b2 ...(1)
This will touch the hyperbola y2a2−x2b2=1 if the equation (mx+c)2a2−x2b2=1 has equal roots.
or x2(b2m2−a2)+2b2mcx+(c2−a2)b2=0 has equal roots
⇒4b4m2c2=4(b2m2−a2)(c2−a2)b2⇒c2=a2−b2m2
∴a2m2−b2=a2−b2m2 ...(Using (1))
⇒m2(a2+b2)=a2+b2⇒m=±1
Hence, the equation of common tangent are y=±x±√a2−b2