The equation whose roots are tan22π7,tan24π7,tan26π7 is
cos2π7,cos4π7,cos6π7 are roots of 8x3+4x2−4x−1=0
Then
1cos2π7,1cos4π7,1cos6π7 are
roots of 8(1x)3+4(1x)2−4(1x)−1=0
⇒sec2π7,sec4π7,sec6π7 are roots of x3+4x2−4x−8=0
Now let y=tan2θ where θ=2π7,4π7,6π7
y=tan2θ=sec2θ−1=x2−1⇒x2=1+y
From
x3+4x2−4x−8=0⇒x3−4x=−4x2+8⇒x(x2−4)=−4(x2−2)⇒x2(x2−4)2=16(x2−2)2⇒(1+y)((1+y)2−4)2=16((1+y)2−2)2⇒y3−21y2+35y−7=0
Therefore
tan22π7,tan24π7,tan26π7 are roots
of y3−21y2+35y−7=0