The correct option is D a2x2−(b2−2ac)x+c2=0
Let α,β be the roots of the given quadratic equation
ax2+bx+c=0
α+β=−ba
αβ=ca
Now, sum of roots =α2+β2=(α+β)2−2αβ
=b2−2aca2
Product of roots =α2β2
=c2a2
Required quadratic equation is
x2−b2−2aca2x+c2a2=0
⇒a2x2−(b2−2ac)x+c2=0