The correct option is
B 2x3−9x2+8x+9=0Let the roots of given equation 2x3+3x2−4x+5=0 is p,q,r
Relation betwen roots and coefficients are
Sum of the roots=−ba
∴p+q+r=−ba=−(3)2=−32
Product of the roots=−da
∴p×q×r=−52
Sum of products of the roots taken two at a time=ca
∴p×q+p×r+q×r=ca=−42=−2
Now new roots are p′=p+2,q′=q+2,r′=r+2
New equation is x3−(p′+q′+r′)x2+((p′×q′)+(q′×r′)+(r′×p′))x−(p′×q′×r′)=0
p′+q′+r′=p+2+q+2+r+2=p+q+r+6=−32+6=92
p′×q′×r′=(p+2)(q+2)(r+2)=pqr+2(pq+pr+qr)+4(p+q+r)+8=−52+2(−2)−4×32+8=−92
(p′×q′)+(q′×r′)+(r′×p′)=(p+2)(q+2)+(r+2)(q+2)+(p+2)(r+2)=pq+qr+pr+12+4p+4q+4r=−2+12+4×−32=4
So, the equation is x3−92x2+4x−(−92)=0
⇒2x3−9x2+8x+9=0