The equation x2+px−q=0 has one root as a square root of the other.
If p3+q2=q(1+kp), find the value of k.
-3
Let the roots of the equation be α,α2.
α+α2=−p -(i)
α3=−q-(ii)
Cubing (i) gives
(α+α2)3=[α(α+1)]3
−p3=α3(α3+3α(α+1)+1)
=α3(α3+3(α+α2)+1)
=−q(q+3(−p)+1)
−p3=q2+3pq−q
p3+q2=q−3pq
=q(1−3p)
p3+q3=q(1+kp) (given)
⇒k=−3