.
Since f(−∞)=−∞ and f(+∞)=∞,
∴f(x)=0 has a real root.
Let the real root be α. Then f(α)=0.
Now, f′(x)=1+ex>0,∀x∈R
∴f(x) is an increasing function ∀x∈R.
∴ for any other real number β
f(β)>f(α) or f(β)<f(α).
∴f(x)=0 has no other real root.
Hence, the equation has only one real root.