The correct options are
A a−b=2
C a−b+2=0
D |a−b|=2
Given,x2+b2=1−2bx and x2+a2=1−2ax have only one common root.
Let α be the common root.
⇒α2+b2=1−2bα
α2+a2=1−2aα
On substracting both the equations b2−a2=α(2a−2b)
⇒a=b or α=−(a+b2)
If a=b they will have both roots common.
So, α=−(a+b2)Substituting α=−(a+b2)
⇒a2+b2+2ab4+b2=1+b(a+b)
a2+b2+2ab4=1+ab
a2+b2+2ab=4+4ab
⇒(a−b)2=4(a−b)=±2 i.e., (a−b)=2,a−b+2=0
Hence, options A, B, C are correct.