wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The equations (qr)x2+(rp)x+pq=0 and (rp)x2+(pq)x+qr=0 have a common root x=a. Find a.

Open in App
Solution

(qr)x2+(rp)x+pq=0
qx2rx2+rxpx+pq=0
q(x21)+r(xx2)+p(1x)=0
q(x+1)(x1)+rx(1x)+p(1x)=0
q(x+1)rxp=0
qx+qrxp=0
x(qr)=pq
x=pqqr
(rp)x2+(pq)x+qr=0
rx2px2+pxqx+qr=0
r(x21)+p(xx2)+q(1x)=0
r(x+1)(x1)+px(1x)+q(1x)=0
r(x+1)pxq=0
rx+rpxq=0
x(rp)=qr
x=qrrp
They have common roots α+β=prqr
β=prqr(pqqr)
β=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
3 Sides and 2 Diagonals
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon