The equations x2+ax+b=0 and x2+cx+d=0 have a common root. If the roots of x2+ax+b=0 are equal, then which one of the following options is/are always true?
Let α be the common root of x2+ax+b=0 and x2+cx+d=0
Since, roots of x2+ax+b=0 are equal,
⇒α+α=−a, α2=b
⇒α=−a2, α2=b
⇒a2=4b
Let β be the other root of x2+cx+d=0
⇒α+β=−c, αβ=d
⇒α+dα=−c
⇒α2+dα=−c
⇒b+d=−αc
⇒b+d=a2c
⇒2(b+d)=ac