The correct option is
B An ellipse
Consider first equation i.e.
x=a(1−t21+t2)
∴xa=(1−t21+t2)
By using componendo- dividendo, we get,
∴x+ax−a=((1−t2)+(1+t2)(1−t2)−(1+t2))
∴x+ax−a=(2−2t2)
∴x+ax−a=−1t2
Taking reciprocals on both sides, we get,
∴−t2=x−ax+a
Multiplying both sides by -1, we get,
∴t2=−(x−a)x+a
∴t2=a−xx+a Equation (1)
Now consider second equation i.e. y=2bt1+t2
Squaring both sides, we get,
∴y2=4b2t2(1+t2)2
Put value of t2 from equation (1),
∴y2=4b2(a−xa+x)(1+a−xa+x)2
∴y2=4b2(a−xa+x)((a+x)+(a−x)a+x)2
∴y2=4b2(a−xa+x)(2aa+x)2
∴y2=4b2(a−xa+x)4a2(a+x)2
∴y2=b2(a−xa+x)×(a+x)2a2
∴y2=b2(a−x)(a+x)a2
∴a2y2=b2(a−x)(a+x)
∴a2y2=b2(a2−x2)
∴a2y2=a2b2−x2b2
∴x2b2+a2y2=a2b2
Dividing both sides by a2b2, we get,
∴x2a2+y2b2=1
∴(xa)2+(yb)2=1
This is equation of an ellipse.
Thus, answer is option (B)