To maintain the mentioned equilibrium there must be some mass of Br2(l) at equilibrium.
Br2(l) ⇌ Br2(g) ; Kp=0.25 atm
So some Br2(l) will be required for this conversion. Moles of Br2(l) required for above equilibrium,
n=PVRT
n=0.25× 164 L0.082L atm mol−1 K−1× 300 K=53
Now for equilibrium
Br2(l) + Cl2(g) ⇌ 2BrCl(g)
t = 0 x 10
t =teq 0 10 - x 2x
(where x be the moles of Br2(l) required just to maintain above equilibrium)
Total gaseous moles = ( 10 + x)
PCl2+PBrCl=2 atm
so
PCl2=10−x10+x×2 atm
PBrCl=2x10+x×2 atm
Kp=P2BrClPCl2
Kp=4x2×(10+x)(10+x)2(10−x)×2
on solving
x=103
Hence total moles of Br2(l) required to maintain both of above equlibiria = 53+103=5 mol