The expansion (1+x)n = 1 + nx + n(n−1)2!(x)2........... is valid if |x| > 1.
False
It is valid only if |x| < 1
The expansion (1+x)n = 1 + nx + n(n−1)2!(x)2......... has infinite number of terms. If |x| > 1, the value on the R.H.S might become infinite. L.H.S. will always be finite if n is finite. E.g.: consider (1+1)n = 1 + n + n(n−1)2!........ L.H.S. is 2n but R.H.S. will be infinite. So we want |x| < 1.