The expression, 3[sin4(3π2−α)+sin4(3π+α)]−2[sin6(π2+α)+sin6(5π−α)] when simplified is equal to
Simplifying we get 3[cos4α+sin4α]−2[cos6α+sin6α] =3[1−2cos2α.sin2α]−2[1−3cos2α.sin2α] =3−6cos2α.sin2α−2+6cos2α.sin2α =3−2 =1
The expression 3[sin4(3π2−α)+sin4(3π+α)]−2[sin6(π2+α)+sin6(5π+α)] is equal to
3[sin4(3π2−α)+sin4(3π+α)] - [sin6(π2+α)+sin6(5π−α)] =