The expression 79+97 is divisible by 64. State true or false.
Given: 79+97
(a+b)n=nC0an+nC1an−1b+…+nCnbn
∴(1+x)n=nC0+nC1x+…+nCnxn
Now,
79+97=(1+8)7−(1−8)9
Use the expansion of (1+x)n
⇒79+97=[1+7C18+7C282+…+7C787]−[1−9C18+9C282−…−9C989]
⇒79+97=(1−1)+(7×8)+(9×8)+
82(7C2−9C2+7C38+9C38+…+9C987)
⇒79+97=8×(7+9)+64λ,λ∈N
⇒79+97=8×16+64λ=64(λ+2)
Therefore, it is a multiple of 64.
Hence, the given statement is True.