The expression cos2 φ+cos2(α+φ)−2 cos α cos φ cos(α+φ) is independent of
cos2 φ+cos2(α+φ)−[cos(a+φ)+cos(a−φ)]cos(a−φ)=cos2φ−cos(a+φ)cos(a−φ)=cos2φ−(cos2φ−sin2a)=sin2 a which is independent of φ