The expression (a+b+c)(b+c−a)(c+a−b)(a+b−c)4b2c2 is equal to
We have,
(a+b+c)(b+c−a)(c+a−b)(a+b−c)4b2c2
We know that, In a triangle
2S=a+b+c
2s(a+b+c−2a)(c+a+b−2b)(a+b+c−2c)4b2c2
=2s(2s−2a)(2s−2b)(2s−2c)4b2c2
=16s(s−a)(s−b)(s−c)4b2c2
=16Δ24b2c2
=4Δ2b2c2
We know that, Δ=12bcsinA
4b2c2(12bcsinA)2
=4b2c2×14b2c2sin2A
=sin2A