1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Domain
The expressio...
Question
The expression,
sin
x
+
sin
2
x
1
+
cos
x
+
cos
2
x
′
where
x
∈
(
−
π
2
,
π
2
)
,
lies in the interval
A
(
−
∞
,
∞
)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(
−
2
,
2
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(
0
,
∞
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(
−
1
,
1
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
(
−
∞
,
∞
)
→
sin
x
+
2
sin
x
cos
x
1
+
cos
x
+
2
cos
2
x
−
1
→
sin
x
(
1
+
2
cos
x
)
cos
x
(
1
+
2
cos
x
)
→
tan
x
for
x
ϵ
(
−
π
/
2
,
π
/
2
)
tan
x
ϵ
(
−
∞
,
∞
)
Suggest Corrections
0
Similar questions
Q.
Find the value of the expression
√
1
−
cos
2
x
sin
x
+
√
1
−
sin
2
x
cos
x
, given that
0
<
x
<
π
2
.
Q.
Find the number of the solutions of the equation
1
+
cos
x
+
cos
2
x
+
sin
x
+
sin
2
x
+
sin
3
x
=
0
which satisfy the condition
π
2
<
∣
∣
∣
3
x
−
π
2
∣
∣
∣
≤
π
.
Q.
Verify Rolle's theorem for each of the following functions on the indicated intervals
(i) f(x) = cos 2 (x − π/4) on [0, π/2]
(ii) f(x) = sin 2x on [0, π/2]
(iii) f(x) = cos 2x on [−π/4, π/4]
(iv) f(x) = e
x
sin x on [0, π]
(v) f(x) = e
x
cos x on [−π/2, π/2]
(vi) f(x) = cos 2x on [0, π]
(vii) f(x) =
sin
x
e
x
on 0 ≤ x ≤ π
(viii) f(x) = sin 3x on [0, π]
(ix) f(x) =
e
1
-
x
2
on [−1, 1]
(x) f(x) = log (x
2
+ 2) − log 3 on [−1, 1]
(xi) f(x) = sin x + cos x on [0, π/2]
(xii) f(x) = 2 sin x + sin 2x on [0, π]
(xiii)
f
x
=
x
2
-
sin
π
x
6
on
[
-
1
,
0
]
(xiv)
f
x
=
6
x
π
-
4
sin
2
x
on
[
0
,
π
/
6
]
(xv) f(x) = 4
sin
x
on [0, π]
(xvi) f(x) = x
2
− 5x + 4 on [1, 4]
(xvii) f(x) = sin
4
x + cos
4
x on
0
,
π
2
(xviii) f(x) = sin x − sin 2x on [0, π]