y=(tanx+tanα)(1+tanxtanα)(tanx−tanα)(1−tanxtanα)Put tanx=u and tanα=c
y=(u+c1−cu)(1+cuu−c)
y=cu2+(1+c2)u+c−cu2+(1+c2)u−c
⇒c(y+1)u2+(1+c2)(1−y)u+c(1+y)=0 .....(1)
Since, u is real D≥0
(1+c2)2(1−y)2−4c2(1+y)2≥0
⇒(1−c2)2y2−2[(1+c2)2+4c2]y+(1−c2)2≥0 ....(2)
Discriminant of equation (2)
D=4[(1+c2)2+4c2]2−4[(1−c2)2]2
D=64(1+c2)2c2.
Roots of equation (2)
=2[(1+c2)2+4c2]±8(1+c2)c2(1−c2)2
=(1+c2)2+4c2±4c(1+c2)(1−c2)2
=(1+c2±2c)2(1−c2)2=(1±c)4(1−c2)2=(1−c1+c)2,(1+c1−c)2
=(1−tanα1+tanα)2,(1+tanα1−tanα)2
∴tan2(π4−α),tan2(π4+α)
Since roots of equation (2) are real and unequal and coefficient of y2=(1−c2)2>0
∴(1−c2)2.y2−2[(1+c2)2+4c2]y+(1−c2)2≥0
⇒y does not lie between
tan2(π4−α) and tan2(π4+α)
Hence, option A.