∑1<∑(n+1)2+1(n+1)2−1<∑(1+2n(n+1))2010<∑2010i=1(n+1)2+1(n+1)2−1<(2010)+2∣∣∣nn+1∣∣∣20102010<∑2010i=1(n+1)2+1(n+1)2−1<(2010)+2(2010)(2011)2010<∑2010i=1(n+1)2+1(n+1)2−1<2010+1+200920112010<∑2010i=1(n+1)2+1(n+1)2−1<2011+200920112010<∑2010i=1(n+1)2+1(n+1)2−1<2011.99