The correct option is
A 17Let p=log25−∑4k=1log2(sin(kπ5))
p=log25−{log2(sin(π5))+log2(sin(2π5))+log2(sin(3π5))+log2(sin(4π5))}
By using the product rule of logarithms, loga+logb=logab we have
p=log25−log2(sinπ5sin2π5sin3π5sin4π5)
=log25−log2(sinπ5sin2π5sin(π−2π5)sin(π−π5))
We know that sin(π−θ)=sin(θ).
Using this, above we have
p=log25−log2(sin2π5sin22π5)
Using cos2θ=1−2sin2θ and sin2θ=1−cos2θ2 we get
p=log25−log2⎛⎜
⎜
⎜⎝1−cos2π521−cos4π52⎞⎟
⎟
⎟⎠
=log25−log2⎛⎜
⎜
⎜
⎜⎝1−cos7221−cos(π−π5)2⎞⎟
⎟
⎟
⎟⎠
As cos(π−θ)=−cosθ
=log25−log2(1−cos7221+cos362)
Substituting the values of cos72=√5−14 and cos36=√5+14 we get
p=log25−log2⎛⎜
⎜
⎜
⎜⎝1−√5−1421+√5+142⎞⎟
⎟
⎟
⎟⎠
=log25−log2((5−√5)(5+√5)64) ...... (On simplifying)
=log25−log2(25−564)
Using quotient law, loga−logb=log(ab) we get
p=log2(5×6420)=log2(644)=log224
As logam=mloga we have
log224=4log22
Since logaa=1 we have p=4,q=1
Hence, p2+q2=42+12=16+1=17