The expression nsin2θ+2ncos(θ+α)sinα sinθ+cos2(α+θ) is independent of θ, the value of n is
2
nsin2θ+2ncos(θ+α)sinα sinθ+cos2(α+θ)
nsin2θ+ncos(θ+α)(cos(θ−α)−cos(θ+α))+2cos2(α+θ)−1
nsin2θ+n(cos2θ−sin2α)−ncos2(θ+α)+2cos2(α+θ)−1
nsin2θ+ncos2θ−nsin2α+(2−n)cos2(θ+α)−1
⇒n=2