wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The expression of the complex number 11+cosθ-isinθ in the form a+ib is


Open in App
Solution

Rationalize the given complex number.

A complex number 11+cosθ-isinθ is given.

Multiply and divide the given complex number with the conjugate of the denominator.

11+cosθ-isinθ=11+cosθ-isinθ·1+cosθ+isinθ1+cosθ+isinθ11+cosθ-isinθ=1+cosθ+isinθ1+cosθ2-isinθ211+cosθ-isinθ=1+cosθ+isinθ1+cos2θ+2cosθ+sin2θ11+cosθ-isinθ=1+cosθ+isinθ1+1+2cosθ11+cosθ-isinθ=1+cosθ+isinθ2+2cosθ11+cosθ-isinθ=1+cosθ+isinθ21+cosθ11+cosθ-isinθ=1+cosθ21+cosθ+isinθ21+cosθ11+cosθ-isinθ=12+2·i·cosθ2·sinθ222cos2θ211+cosθ-isinθ=12+i·sinθ22cosθ211+cosθ-isinθ=12+i·tanθ2{Since, 1+cosθ=2cos2θ2}

Therefore, the given complex number 11+cosθ-isinθ in the form a+ib is 12+i·tanθ2.


flag
Suggest Corrections
thumbs-up
21
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Substitution Method to Remove Indeterminate Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon