sec50°+tan50° is equal to
tan(20°)+tan(50°)
2tan(20°)+tan(50°)
tan(20°)+2tan(50°)
2tan(20°)+2tan(50°)
Explanation for the correct option:
Simplify the given expression.
An expression sec50°+tan50° is given.
Simplify the given expression as follows:
sec50°+tan50°=1cos(50°)+tan(50°)⇒sec50°+tan50°=1cos(50°)·cos(20°)cos(20°)+tan(50°)⇒sec50°+tan50°=sin(70°)cos(50°)·cos(20°)+tan(50°)⇒sec50°+tan50°=sin(50°+20°)cos(50°)·cos(20°)+tan(50°)⇒sec50°+tan50°=sin(50°)·cos(20°)+cos(50°)·sin(20°)cos(50°)·cos(20°)+tan(50°)⇒sec50°+tan50°=sin(50°)·cos(20°)cos(50°)·cos(20°)+cos(50°)·sin(20°)cos(50°)·cos(20°)+tan(50°)⇒sec50°+tan50°=sin(50°)cos(50°)+sin(20°)cos(20°)+tan(50°)⇒sec50°+tan50°=tan(50°)+tan(20°)+tan(50°)⇒sec50°+tan50°=tan(20°)+2tan(50°){Since, secθ=1cosθ,sin(A+B)=sin(A)cos(B)+cos(A)sin(B)}
Therefore, the given expression sec50°+tan50° is equal to tan20°+2tan50°.
Hence, the option C is the correct .
P(E)+P(¯E) is equal to