The correct option is A tan−12x
tan−1(6x−8x31−12x2)−tan−1(4x1−4x2)=tan−1[3×2x−(2x)31−3×(2x)2]−tan−1[2×2x1−(2x)2]
Considering
tan−12x=θ⇒2x=tanθ
As |2x|<1√3⇒θ∈(−π6,π6)
Now, the expression simplifies to
=tan−1[3tanθ−tan3θ1−3tan2θ]−tan−1[2tanθ1−tan2θ]=tan−1(tan3θ)−tan−1(tan2θ)
In the given interval
3θ∈(−π2,π2), 2θ∈(−π3,π3)
So,
tan−1(tan3θ)−tan−1(tan2θ)=θ=tan−12x