The correct option is A 5 factors
x9−x=x(x8−1)
=x[(x4)2−1]
=x[(x4)2−12]=x(x4−1)(x4+1)
(Using a2−b2=(a−b)(a+b))
=x[(x2)2−12](x4+1)
=x(x2−1)(x2+1)(x4+1)
=x(x−1)(x+1)(x2+1)(x4+1)
Hence, the expression x9−x has 5 factors, namely,
x,(x−1),(x+1),(x2+1) and (x4+1)