The extreme values of the function f(x)=1sinx+4−1cosx−4, where xϵR is
Given function is f(x)=1sinx+4−1cosx−4
To get the extreme values, f′(x)=0
f′(x)=−cosx(sinx+4)2−sinx(cosx−4)2=0⇒sin3x+cos3x+16(sinx+cosx)+8(sin2x−cos2x)=0
(sinx+cosx)(1−sinxcosx+16+8sinx−8cosx)=0
sinx=−cosx⇒x=3π4,7π4
f(3π4)=2√24√2+1
f(7π4)=48−√2