The factorization form of a4+b4–a2b2 is _____________.
We have a4+b4−a2b2
Adding and subtracting 2a2b2, we get
=(a2)2+(b2)2+2a2b2−2a2b2−a2b2
=(a2+b2)2−3a2b2 [Using the identity: x2+y2+2xy=(x+y)2]
=(a2+b2)2−3a2b2
=(a2+b2+√3ab)(a2+b2−√3ab) [Using the identity: (a2−b2)=(a+b)(a−b)]
Hence, the factorization form of a4+b4–a2b2 is (a2+b2+√3ab)(a2+b2−√3ab)