Finding sequence.
Given, a1=a2=1 and an=an−1+an−2 ∀ n>2, n ϵ N.
Substituting n=3,4,5 and 6 in an, we get
a3=a3−1+a3−2
⇒a3=a2+a1
⇒a3=1+1
⇒a3=2
a4=a4−1+a4−2
⇒a4=a3+a2
⇒a4=2+1
⇒a4=3
a5=a5−1+a5−2
⇒a5=a4+a3
⇒a5=3+2
⇒a5=5
a6=a6−1+a6−2
⇒a6=a5+a4
⇒a6=5+3
⇒a6=8
Thus, the Fibonacci sequence is 1,1,2,3,5,8,....
Finding value of an+1an for n=1,2,3,4,5
Now, for n=1,
a1+1a1=a2a1=11=1
for n=2,
a2+1a2=a3a2=21=2
for n=3
a3+1a3=a4a3=32
for n=4
a4+1a4=a5a4=53
for n=5
a5+1a5=a6a5=85
Final answer:
Hence, the Fibonacci sequence is 1,1,2,3,5,8,... and the values of an+1an for n=1,2,3,4 and 5 are 1,2,32,53 and 85 respectively.