T5=a+4d=1,T31=a+30d=−77,
Solving the given two, we get
a=13 and d=−3. ..(1)
S15=(n/2)[2a+(n−1)d]
=(15/2)[26+14(−3)]=−120.
Let Tn=−17. Then a+(n−1)d=−17.
13+(n−1)(−3)=−17
∴3n=33 or n=11.
Let Sn=20. Then (n/2)[2a+(n−1)d]=20.
n[2×13+(n−1)(−3)]=40, by (1).
3n2−29n+40=0
∴(n−8)(3n−5)=0,
∴n=8.
The value of n cannot be fractional.