Given T5=a+4d=1,T31=a+30d=−77,
Solving the above
two, we get a=13 and d=−3.
T20=13−(20−1)3=−44
S15=[n/2][2a+[n−1]d]=[15/2][26+14[−3]]=−120
Let Tn=−17.
Then a+[n−1]d=−17. 13+[n−1][−3]=17∴3n=33
or n=11
Let Sn=20 Then (n/2)[2a+(n−1)d]=20.
n[n×13+(n−1)(−3)=40] by [1].
3n2−29n+40=0∴[n−8][3n−5]=0∴n=8
The value of n cannot be fractional.