The correct option is C 3
Let the first term be a, the common difference be d .
Then the nth term
an=a+(n−1)d
⇒a5=a+4d and
⇒a9=a+8d
Given a5=25 and a9=37
a+4d=25 ...(i)
a+8d=37 ...(ii)
Subtracting (i) from (ii), we get
a+8d−a−4d=37−25
⟹4d=12
⟹d=3
Substitute the value of d in (i).
⇒a+12=25
⇒a=13
13th of the A.P = a +12d
=13+12×3
=13+36=49