The figure below shows a circle centered at O and of radius 5 cm. AB and AC are two chords such that AB = AC = 6 cm. AP is perpendicular to BC. Find the length of the chord BC.
9.6 cm
In ΔAPC,
∵ AP is perpendicular to BC
⇒AC2=PC2+AP2⇒PC2=AC2−AP2
=(6)2−AP2 =36−AP2−−−(1)
In ΔPOC,
PC2=OC2−OP2
=25−(5−AP)2
[∵ PO = AO - AP = 5 - AP]
PC2=25−(25+AP2−10AP)
PC2=10AP−AP2 ------- (2)
Substitute (1) in (2)
36−AP2=10AP−AP2
⟹AP=3.6 cm
PC2=36−AP2 =36−12.96 =4.8 cm
Since a perpendicular from the centre of a circle to a chord bisects the chord,
BC=2×PC=2×4.8=9.6 cm.