The figure, given below, shows a pentagon ABCDE with sides AB and ED parallel to each other, and ∠B:∠C|∠D=5:6:7.
(i) Using formula, find the sum of interior angles of the pentagon.
(ii) Write the value of ∠A+∠E
(iii) Find angles B, C and D.
(i) Sum of interior angles of the pentagon =(5−2)×180o=3×180o=540o [∵sum for a polygon of x sides=(x−2)×180o]
(ii) Since AB||ED
∴∠A+∠E=180o
(iii) Let ∠B=5x ∠C=6x ∠D=7x∴5x+6x+7x+180o=540o (∠A+∠E=180o) Proved in (ii)
18x=540o−180o⇒18x=360o⇒x=20o∴∠B=5×20o=100o, ∠C=6×20=120o∠D=7×20=140o