Given, OE⊥CD where O is the centre of the circle.
We know that the perpendicular from the centre of a circle to a chord bisects the chord.
So, CE=ED=4 cm
Join OD. Let radius of the circle be 'r' cm.
OB = OD = r cm
EB = 2 cm (given)
∴ OE = (r - 2) cm
In △OED, ∠OED=90o
Using Pythagoras' theorem in △OED, we get
OD2 = OE2+ED2
⇒ r2=(r−2)2+42
⇒ r2=(r2−4r+4)+16
⇒ 4r=20
⇒ r=5 cm