Let a be the first term and d be the common difference.
We know that, sum of first n terms = Sn = [2a + (n − 1)d]
Also, nth term = an = a + (n − 1)d
According to the question,
a = 7, an = 49 and Sn = 420
Now,
an = a + (n − 1)d
⇒ 49 = 7 + (n − 1)d
⇒ 42 = nd − d
⇒ nd − d = 42 ....(1)
Also,
Sn = [2 × 7 + (n − 1)d]
⇒ 420 = [14 + nd − d]
⇒ 840 = n[14 + 42] [From (1)]
⇒ 56n = 840
⇒ n = 15 ....(2)
On substituting (2) in (1), we get
nd − d = 42
⇒ (15 − 1)d = 42
⇒ 14d = 42
⇒ d = 3
Thus, common difference of the given A.P. is 3.