Let a be the first term and r be the common ratio of the given G.P.
Given that a=375,t4=192.
Now, tn=arn−1
Therefore, t4=375r3⇒375r3=192
⇒r3=192375⇒r3=64125
⇒r3=(45)3⇒r=45, which is the required common ratio.
Now, Sn=a[rn−1r−1] if r≠1
Thus, S14=275[(45)14−1]45−1=(−1)×5×375[(45)14−1]
=(375)(5)[1−(45)14]=1875[1−(45)14].