Here, the maximum class frequency is
40 and the class corresponding to it is
1500−2000.
So, the modal class =1500−2000.
Thus, lower limit of the modal class l=1500
Frequency of the modal class, f1=40
Frequency of the class preceding the modal class, fo=24
Frequency of the class succeeding the modal class,f2=33
and, class size h=2000−1500=500
Now, substituting these values in the formula of mode, we get
Mode=l+f1−f02f1−f0−f2×h
Mode=1500+40−242×40−24−33×500
Mode=1500+1680−57×500
Mode=1500+800023=1500+347.83
Mode=1847.83
Hence, the modal monthly expenditure of the families is Rs.1847.83.
Finding Mean:
Expenditure (inRs) | Numberoffamilies (fi) | Classmark (xi) | di=xi−3250 | ui=di500 | fiui |
1000−1500 | 24 | 1250 | −2000 | −4 | −96 |
1500−2000 | 40 | 1750 | −1500 | −3 | −120 |
2000−2500 | 33 | 2250 | −1000 | −2 | −66 |
2500−3000 | 28 | 2750 | −500 | −1 | −28 |
3000−3500 | 30 | 3250 | 0 | 0 | 0 |
3500−4000 | 22 | 3750 | 500 | 1 | 22 |
4000−4500 | 16 | 4250 | 1000 | 2 | 32 |
4500−5000 | 7 | 4750 | 1500 | 3 | 21 |
Total | ∑fi=200 | | | | ∑fiui=−235 |
Here, we have
∑fi=200,∑fiui=−235,h=500 and Assumed mean
A=3250.
Now, ¯¯¯x=A+(∑fiu1∑fi)×h
⇒ ¯¯¯x=3250+(−235200)×500
⇒ ¯¯¯x=3250−235×52=3250−11752
⇒ ¯¯¯x=3250−587.50=2662.50
Hence, the mean monthly expenditure is Rs.2662.50