The following distribution shows the daily pocket allowance of children of a locality. If the mean pocket allowance is Rs. 18, find the missing frequency f.
Daily pocketallowance(in Rs)11−1313−1515−1717−1919−2121−2323−25Frequency76913f54
The given data is shown as follows:
Daily pocket allowance (in Rs.) | Number of children (fi) | Class mark (xi) | (fixi) |
11 - 13 | 7 | 12 | 84 |
13 - 15 | 6 | 14 | 84 |
15 - 17 | 9 | 16 | 144 |
17 - 19 | 13 | 18 | 234 |
19 - 21 | f | 20 | 20f |
21 - 23 | 5 | 22 | 110 |
23 - 25 | 4 | 24 | 96 |
Total | ∑fi=44+f | ∑(fi×xi)=752+20f |
The mean of given data is given by
¯x= ∑(fi×xi)/∑fi
⇒ 18 = 752+20f44+f
⇒ 18(44 + f) = 752 + 20f
⇒ 792 + 18f = 752 + 20f
⇒ 20f - 18f = 792 - 752
⇒ 2f = 40
⇒ f = 20
Hence, the value of f is 20.