(i) ∠DAB=∠CBA
Construction :- Produce AB to E and draw CE∥DA,MO∥AB
Proof: So AECD is a parallelogram.
In △BEC
BC=CE (AD=BC=CE,opposite sides of parallelogram)
∠CBE=∠CEB (opposite to equal sides) ---- (1)
∠ADC=∠BEC (opposite angle of a parallelogram) ----- (2)
∠DAB+∠ADC=180∘ (sum of co-interior angles) ------ (3)
∠ABC+∠EBC=180∘ (L.P.P.)
∠ABC+∠ADC=180∘ ---- (4) from (2)
From equation (3) and (4)
∠DAB=∠CBA
(ii) ∠BCD=∠EBC ---- (5) (alternate interior angles)
From equations (1),(2), and (5),
∠ADC=∠BCD proved
(iii) In △ABD and ΔBAC
∠BAD=∠ABC
AB=AB (common)
AD=BC (Given)
△ABD≅△BAC (by SAS rule)
BD=AC (By C.P.C.T)
(iv) In △ABD
MO∥AB
AMMD=BOOD --- A, (by lemma of B.P.T)
In △ADC
MO∥DC
AMMD=AOOC ---- B (by B.P.T.)
From equations A and B,
BOOD=AOOC ---- C
BOOD+1=AOOC+1
BO+DOOD=AO+OCOC
BDOD=ACOC
OD=OC (AC=BD)
From equation C,
OB=OA (OD=OC)