wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The following figure shows a triangle ABC in which AD is a median and AEBC.
Prove that: 2AB2+2AC2=4AD2+BC2
183818.jpg

Open in App
Solution

In AEB,
AB2=AE2+EB2 ..... (1)

In AED,
AD2=AE2+ED2 ...... (2)

In AEC,
AC2=AE2+EC2 ...... (3)

Adding (1) and (3), we get
AB2+AC2=2AE2+EC2+EB2
But EC2+EB2=CB22EC.EB
AB2+AC2=2AE2+CB22EC.EB ...... (4)

From (2), AE2=AD2ED2 ...... (5)
Substituting (5) in (4), we get
AB2+AC2=2AD22ED2+CB22EC.EB

DE=DBEB
DE2=DB2+EB22DB.BE --(6)

Substituting (6) in (4)
AB2+AC2=2AD22DB22EB2+4DB.BE2EC.EB+CB2=2AD22DB22EB2+2EB(2DBEC)+CB2=2AD22DB22EB2+2EB(BCEC)+CB2[CD=BD]=2AD22DB22EB2+2EB(EB)+CB2=2AD22DB2+CB2

But DB=BC/2
AB2+AC2=2AD224CB2+CB22AB2+2AC2=4AD2+BC2
Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Apollonius's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon