wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.
Monthly consumption
(in units):
658585105105125125145145165165185185205
No. of consumers4513201484

Open in App
Solution

Classinterval xi fifixi Cumulativefrequency
6585 75 4 300 4
5810595 5 475 9
105125115 13 1495 22
125145 135 20 2700 42
145165155 14 2170 56
165185175 8 1400 64
185205 195 4 780 68
fi=68 fixi=9320
Mean=fixifi=932068=137.05

l= lower limit of the modal class

h= size of the class intervals

f= frequency of the modal class

f1= frequency of the class preceding the modal class

f2= frequency of the class succeed in the modal class.

We have, N=68 and N2=34
The cumulative frequency just greater than N2 is 42 then the median class is 125145 such that,

l=125,h=145125=20,f=20,cf=22

Median=l+N2cff×h

Median=125+342220×20

Median=125+12=137

We know,

Mode=l+ff12ff1f2×h

Here the maximum frequency is 20, then the corresponding class 125145 is the modal class

l=125,h=145125=20,f=20,f1=13,f2=14

Mode=125+14013=135.77

Now, after comparing all three values, we get following relation,

Mean>Median>Mode

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mean
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon