The foot of the perpendicular drawn from the origin to a plane is (1,2,−3). Find the equation of the plane.
Given:
Let the equation of plane passing through (1,2,3) and perpendicular to OA.
A=^i+2^j−3^k
→n=−−→OA=^i+2^j−3^k
a=|^i+2^j−3^k|=√1+4+9=√14
^n=^i+2^j−3^k√14
The equation of the required plane is →r⋅→n=a
⇒→r⋅(^i+2^j−3^k√14)=√14
⇒→r⋅(^i+2^j−3^k)=14
⇒x+2y−3z=14
Thus, the equation of the plane is x+2y−3z=14.