The correct option is C ke22(1R2−1R1)
Given, the force between the nucleus and the revolving electron is,
F=ke2r2
∴ ke2r2=mv2r
⇒ mv2=ke2r
⇒ 12mv2=ke22r
Total energy of the electron in a stationary orbit is,
T.E=K.E+P.E
T.E=ke22r+(−ke2r)
T.E=(−ke22r)
Also, we know
T.E=−K.E=(−ke22r)
Replace r into R in the above relation, we get,
T.E=−K.E=(−ke22R)
Let, total energy in the stationary orbit R1 and R2 be T.Ei and T.Ef respectively.
T.Ei=(−ke22R1)
T.Ef=(−ke22R2)
The decrease energy in the total energy is,
ΔE=T.Ei−T.Ef=−ke22R1−(−ke22R2)
=ke22(1R2−1R1)
<!--td {border: 1px solid #ccc;}br {mso-data-placement:same-cell;}-->
Hence, (C) is the correct answer.