The four vertices of a quadrilateral are (1, 2), (-5, 6), (7, -4) and (k, -2) taken in order. If the area of the quadrilateral is zero, find the value of k.
Let A (1, 2) , B (-5, 6), C (7, -4) and D (k , -2) be the vertices of the quadrilateral.
We have,
∴ Area of △ ABC =12[{(6+20+14)−(−10+42−4)}]
⇒ Area of △ABC=12(40−28)=6 sq.units
Also, we have
Area of △ ACD = 12{(−4−14+2k)−(14−4k−2)}
⇒Area of △ACD=12{(2k−18)−(12−4k)}⇒Area of△ACD=12(6k−30)=(3k−15)
∴ Area of quadrilateral ABCD = 6+ 3k -15 = 3k- 9
It is given that the area of quadrilateral is zero.
∴ 3k -9 = 0
⇒ k = 3