The Fourier cosine series for an even function f(x) given by f(x)=a0+∑∞n=1ancosn(x) The value of the coefficient a2 for the function f(x)=cos2(x)in[0,π] is
Fourier cosine series is
f(x)=a02+∑ancosn(x)....(i)
where an=1π∫π0f(x)cosnxdx
Now by (i) we have
f(x)=a02+a1cosx+a2cos2x+a3cos3x+...
cos2x=a02+a1cosx+a2cos2x+a3cos3x+....
12+cos2x2=a02+a1cosx+a2cos2x+...
⇒a0=1,a1=0,a2=12,a3=0 and so on...