The Fourier series expansion of the saw - toothed waveform f(x)=x, in the intervel (−π,π) of period 2π gives the series, 1−13+15−17+....=?
π4
f(x)=x,(−π,π)
It is an odd function.
a0=1π∫π−πf(x)dx=0
an=1π∫π−πf(x)cosnxdx=0
bn=1π∫π−πf(x)sinnxdx
=1π∫π−πxsinnxdx=2(−1)n+1n
Hence Fourier series is,
f(x)=a02+∑ancosnx+∑bnsinnx
f(x)=∑∞n=12(−1)n+1nsinnx
x=2[1.sinx−12sin2x+13sin3x−14sin4x+....]
Put x =π2.
π2=2[1−13+15−17+....]
So,1−13+15−17+....=π4