Given that,
s=5 m
μ=4/3
g=10 m/s2
u=36 km/hr=36x5/18=10 m/s
V=0 m/s
Now, from equation of motion
v2−u2=2as
a=v2−u22s
a=0−1022×5
a=−10m/s2
Now,
Normal force N=mgcosθ
Frictional force
Ff=μN
Ff=43×mgcosθ
Net force along the incline against the motion
=43mgcosθ−mgsinθ
Now, newton’s second law
43mgcosθ−mgsinθ=ma
4mgcosθ−3mgsinθ=30
40cosθ−30sinθ=30
3sinθ−4cosθ+3=0
3(1+sinθ)=4cosθ
1+sinθcosθ=43
(cosθ2+sinθ2)(cosθ2−sinθ2)=43
(1+tanθ2)⎛⎝1−tanθ2⎞⎠=43
3+3tanθ2=4−4tanθ2
7tanθ2=1
tanθ2=17
θ2=8.13
θ=16.2
θ=160
Hence, the maximum incline is 160