The function asinx+bcosxcsinx+dcosx is decreasing, if
ad-bc>0
ad-bc<0
ab-ad>0
ab-cd<0
Explanation for the correct option
The given function, fx=asinx+bcosxcsinx+dcosx.
Differentiate the given function with respect to x.
ddxfx=ddxasinx+bcosxcsinx+dcosx⇒f'x=csinx+dcosxddxasinx+bcosx-asinx+bcosxddxcsinx+dcosxcsinx+dcosx2∵ddx(uv)=vdudx-udvdxv2⇒f'x=csinx+dcosx×acosx-bsinx-asinx+bcosx×ccosx-dsinxcsinx+dcosx2⇒f'x=acsinxcosx-bcsin2x+adcos2x-bdsinxcosx-acsinxcosx+adsin2x-bccos2x+bdsinxcosxcsinx+dcosx2⇒f'x=adcos2x+adsin2x-bcsin2x-bccos2xcsinx+dcosx2⇒f'x=adcos2x+sin2x-bcsin2x+cos2xcsinx+dcosx2⇒f'x=ad×1-bc×1csinx+dcosx2∵sin2(x)+cos2(x)=1⇒f'x=ad-bccsinx+dcosx2
Now, for decreasing intervals f'(x)<0.
⇒ad-bccsinx+dcosx2<0⇒ad-bc<0×csinx+dcosx2∵csinx+dcosx2≥0⇒ad-bc<0
So, the function asinx+bcosxcsinx+dcosx is decreasing if ad-bc<0.
Hence, the correct option is (B).
The interval on which the function f(x) = 2x3 + 9x2 + 12x - 1 is decreasing is (a) [-1, ∞) (b) [-2, -1] (c) (∞, -2] (d) [-1, 1]