1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Definition of a Determinant
The function ...
Question
The function
|
x
|
x
2
+
2
x
,
x
≠
0
and
f
(
0
)
=
0
is not continuous at
x
=
0
because-
A
lim
x
→
0
f
(
x
)
≠
f
(
0
)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
lim
x
→
0
+
f
(
x
)
does not exist
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
lim
x
→
0
−
f
(
x
)
does not exist
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
lim
x
→
0
f
(
x
)
does not exist.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
C
lim
x
→
0
f
(
x
)
does not exist.
f
(
x
)
=
⎧
⎨
⎩
−
x
x
2
+
2
x
if
x
<
0
x
x
2
+
2
x
if
x
>
0
⎫
⎬
⎭
⇒
f
(
x
)
=
⎧
⎨
⎩
−
1
x
+
2
if
x
<
0
1
x
+
2
if
x
>
0
⎫
⎬
⎭
Clearly L.H.L
=
−
1
≠
R.H.S
=
1
Hence
lim
x
→
0
f
(
x
)
does not exist.
Suggest Corrections
0
Similar questions
Q.
f
(
x
)
=
⎧
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩
tan
x
−
sin
x
x
3
;
x
<
0
cot
−
1
x
−
cos
−
1
x
x
3
;
x
>
0
1
2
;
x
=
0
Then which of the following is correct
Q.
If
f
(
x
)
=
[
x
]
−
[
x
4
]
,
x
∈
R
, where
[
x
]
denotes the greatest integer function, then :
Q.
Let f(x) be a function defined by
f
x
=
3
x
x
+
2
x
,
x
≠
0
0
,
x
=
0
.
Show that
lim
x
→
0
f
x
does not exist.
Q.
If f(0)=0
and that
'f'
is differentiable at x = 0, and ‘k’ is a positive integer. Then
lim
x
→
0
1
x
[
f
(
x
)
+
f
(
x
2
)
+
f
(
x
3
)
+
…
…
+
f
(
x
k
)
]
Q.
If
f
x
=
x
sin
1
/
x
,
x
≠
0
,
then
lim
x
→
0
f
x
=
(a)
1
(
b
)
0
(
c
) −1
(d) does not exist
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Introduction
MATHEMATICS
Watch in App
Explore more
Definition of a Determinant
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app